If it's not what You are looking for type in the equation solver your own equation and let us solve it.
99=6x^2
We move all terms to the left:
99-(6x^2)=0
a = -6; b = 0; c = +99;
Δ = b2-4ac
Δ = 02-4·(-6)·99
Δ = 2376
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2376}=\sqrt{36*66}=\sqrt{36}*\sqrt{66}=6\sqrt{66}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-6\sqrt{66}}{2*-6}=\frac{0-6\sqrt{66}}{-12} =-\frac{6\sqrt{66}}{-12} =-\frac{\sqrt{66}}{-2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+6\sqrt{66}}{2*-6}=\frac{0+6\sqrt{66}}{-12} =\frac{6\sqrt{66}}{-12} =\frac{\sqrt{66}}{-2} $
| p-12=9 | | a.15 | | 10=-10+r | | −(x− | | −(x− | | -3y=0+6 | | 22/25=8/5m | | g/23=13 | | 0.5b=32 | | -2=r+12 | | 11+2m=3 | | f/14=25 | | 10y-1=y+53 | | 16=j/10 | | 1.3=n/9.9 | | 5k+18=-27 | | g-143=296 | | 7x=10−2x² | | 12=u-29 | | 6p-4=-22 | | 4.9+1.2n=2.38 | | 2x+9=34-4x | | 51-3t=1111 | | 8(x+2)=3x+46 | | 81=-3(3x-6) | | 5.4+1.7n=1.83 | | 7x+3x-10=30 | | t-78=10 | | -8+3y=14+y | | 2(x+10)=4(5-x)+6x | | 20-t=26 | | -18-(3x-2)=3(x-5)-1 |